
heka-node Documentation
Release 0.5

Rob Miller, Victor Ng

March 22, 2016

Contents

1 Welcome to heka-node’s documentation! 3
1.1 Getting Started . 3
1.2 Heka Configuration . 3

1.2.1 JSON format . 3
1.2.2 Setting up a heka-node client . 4
1.2.3 Streams . 4
1.2.4 debugStreamFactory . 4
1.2.5 fileStreamFactory . 5
1.2.6 stdoutStreamFactory . 5
1.2.7 udpStreamFactory . 5
1.2.8 Filters . 6
1.2.9 Disabling Timers . 6
1.2.10 Plugins . 6

1.3 Basic Usage . 7
1.3.1 Increment counters . 7
1.3.2 Timers . 7
1.3.3 Encoders . 8
1.3.4 Example . 8

2 Indices and tables 9

i

ii

heka-node Documentation, Release 0.5

heka-node is a Node.js client for the “Heka” system of application logging and metrics gathering developed by the
Mozilla Services team. The Heka system is meant to make life easier for application developers with regard to gener-
ating and sending logging and analytics data to various destinations. It achieves this goal (we hope!) by separating the
concerns of message generation from those of message delivery and analysis. Front end application code no longer has
to deal directly with separate back end client libraries, or even know what back end data storage and processing tools
are in use. Instead, a message is labeled with a type (and possibly other metadata) and handed to the Heka system,
which then handles ultimate message delivery.

More information about how Mozilla Services is using Heka (including what is being used for a router and what
endpoints are in use / planning to be used) can be found in the heka-docs repository on github.

You can find a pre-rendered version of that documentation on readthedocs.org at heka-docs.rtfd.org.

A pre-rendered version of the heka-node documentation can be found on readthedocs.org at heka-node.rtfd.org.

The primary component to the heka-node library, is the Basic Usage client class which exposes a clientFromJsonConfig
factory function that will generate a configured client.

The HekaClient should be instantiated with the factory function.

Folks new to using Heka will probably find Heka Configuration a good place to get started.

Contents 1

https://wiki.mozilla.org/Services
https://github.com/mozilla-services/heka-docs
http://heka-docs.rtfd.org
http://heka-node.rtfd.org

heka-node Documentation, Release 0.5

2 Contents

CHAPTER 1

Welcome to heka-node’s documentation!

Contents:

1.1 Getting Started

There are two primary components with which users of the heka-node library should be aware. The first is the Basic
Usage clientFromJsonConfig factory function.

The HekaClient exposes the Heka API, and is generally your main point of interaction with the Heka system. The
client doesn’t do very much, however; it just provides convenience methods for constructing messages of various types
and then passes the messages along. Actual message delivery is handled by a stream. Without a properly configured
stream, a HekaClient is useless.

1.2 Heka Configuration

To assist with getting a working Heka set up, heka-node provides a Basic Usage module which will take declarative
configuration info in JSON format and use it to configure a HekaClient instance.

1.2.1 JSON format

The clientFromJsonConfig function of the config module is used to create a HekaClient instance.

A minimal configuration that will instantiate a working Heka client may look like this

var heka = require('heka');
var heka_CONF = {

'stream': {'factory': 'heka/streams:udpStreamFactory',
'hosts': ['localhost'],
'ports': [5565]

},
'logger': 'test',
'severity': heka.SEVERITY.INFORMATIONAL

};
var jsonConfig = JSON.stringify(heka_CONF);
var log_client = heka.clientFromJsonConfig(jsonConfig);

There are several optional parameters you may use to specialize the heka-node client. A detailed description of each
option follows:

3

heka-node Documentation, Release 0.5

logger Each heka message that goes out contains a logger value, which is simply a string token meant to identify the
source of the message, usually the name of the application that is running. This can be specified separately for
each message that is sent, but the client supports a default value which will be used for all messages that don’t
explicitly override. The logger config option specifies this default value. This value isn’t strictly required, but if
it is omitted ‘’ (i.e. the empty string) will be used, so it is strongly suggested that a value be set.

severity Similarly, each heka message specifies a severity value corresponding to the integer severity values defined
by RFC 3164. While each message can set its own severity value, if one is omitted the client’s default value will
be used. If no default is specified here, the default default (how meta!) will be 6, “Informational”.

disabledTimers Heka natively supports “timer” behavior, which will calculate the amount of elapsed time taken by
an operation and send that data along as a message to the back end. Each timer has a string token identifier.
Because the act of calculating code performance actually impacts code performance, it is sometimes desirable
to be able to activate and deactivate timers on a case by case basis. The disabledTimers value specifies a set
of timer ids for which the client should NOT actually generate messages. Heka will attempt to minimize the
run-time impact of disabled timers, so the price paid for having deactivated timers will be very small. Note that
the various timer ids should be newline separated.

filters You can configure client side filters to restrict messages from going to the server.

1.2.2 Setting up a heka-node client

The following snippet demonstrates setting up a minimal heka-node client that writes out protocol buffer formatted
messages to localhost on port 5565.

var heka = require('heka');
var config = {

'stream': {'factory': 'heka/streams:udpStreamFactory',
'hosts': ['localhost'],
'ports': [5565]

},
'logger': 'test',
'severity': heka.SEVERITY.INFORMATIONAL

};

var jsonConfig = JSON.stringify(config);
var client = heka.clientFromJsonConfig(jsonConfig);

1.2.3 Streams

The heka client supports different kinds of output streams.

Each stream allows at least the one parameter hmc which specifies the kind of HMAC signature to use when signing
messages. By default, hmc is set to null and no signatures will be written into the header portion of the serialized
message.

1.2.4 debugStreamFactory

Buffers messages into a list within the stream. This is useful if you want to capture your own messages
for inspection within a unit test suite. Example usage can be found in the heka-node testsuite.

No extra configuartion parameters are supported.

Sample configuration

4 Chapter 1. Welcome to heka-node’s documentation!

https://www.ietf.org/rfc/rfc3164.txt

heka-node Documentation, Release 0.5

var heka = require('heka');
var config = {

'stream': {'factory': 'heka/streams:debugStreamFactory'},
'logger': 'test',
'severity': heka.SEVERITY.INFORMATIONAL

};

1.2.5 fileStreamFactory

Write messages out into a filepath. The parent directory of the file must exist.

filepath is a required parameter. The parent directory of filepath must exist or the heka-client will error
out during initialization.

Sample configuration

var heka = require('heka');
var config = {

'stream': {'factory': 'heka/streams:fileStreamFactory',
'filepath': '/tmp/some_output_file.txt'},

'logger': 'test',
'severity': heka.SEVERITY.INFORMATIONAL

};

1.2.6 stdoutStreamFactory

Writes messages directly to stdout. This is probably not useful to most people as all messages are se-
rialized to protocolbuffer prior to being written to a stream. This output stream may be useful if you
implement an encoder to replace the ProtobufEncoder.

No extra configuration parameters are supported.

Sample configuration

var heka = require('heka');
var config = {

'stream': {'factory': 'heka/streams:stdoutStreamFactory'},
'logger': 'test',
'severity': heka.SEVERITY.INFORMATIONAL

};

1.2.7 udpStreamFactory

Writes messages to one or more hosts.

udpStreamFactory expects hosts and ports to be defined.

Sample configuration

var heka = require('heka');
var config = {

'stream': {'factory': 'heka/streams:udpStreamFactory',
'hosts': ['localhost'],
'ports': [5565],

},
'logger': 'test',

1.2. Heka Configuration 5

heka-node Documentation, Release 0.5

'severity': heka.SEVERITY.INFORMATIONAL
};

1.2.8 Filters

Filters can be used to suppress the client from emitting messages which match specific criteria. We currently provide
the following filters :

typeBlacklistProvider Suppress any messages where the type attribute matches one of the types in the provider.

Sample Configuration :: var config = {‘types’: {‘foo’: {‘severity’: 3}}};

typeWhitelistProvider Only allow messages to pass through where the type matches one of the types in the provider.

severityMaxProvider Only allow message to pass through if the severity of the message is strictly greater than the
severity in the provider.

typeSeverityMaxProvider Given a dictionary of type to severity, only allow message to pass through for a given type
if the severity of the message is strictly greater than the one specified in the configuration.

For messages where the type is not specified, allow the message through regardless of the severity.

Example usage for each of these filter is available in the filters.spec.js testsuite

1.2.9 Disabling Timers

The heka client will let you disable calls to the timer() method. Each call to timer() requires a timer name in the second
positional argument. Passing in a list of names, or a wildcard (‘*’) will disable any timer calls where the timer name
matches at least one of the disabled timer names.

The configuration expects either a list of message type names which match timer messages that will be excluded. You
can also use a wildcard * to disable all timer code.

Example configuration

var config = {
'stream': {'factory': 'heka/streams:debugStreamFactory'},
'logger': 'test',
'severity': 5,
'disabledTimers': ['some_disabled_type'],

};
var jsonConfig = JSON.stringify(config);
var client = configModule.clientFromJsonConfig(jsonConfig);

1.2.10 Plugins

Plugins can be bound to the heka-node client using the plugins key of the configuration dictionary. You must provide
at least a provider key which will be resolved into a factory function to bind a new method onto the heka-node client.
Any additional key/value pairs in the plugin configuration are passed into the factory function to configure the plugin.

Example configuration

var config = {
'stream': {'factory': 'heka/streams:debugStreamFactory'},
'logger': 'test',
'severity': 5,
'plugins': {'showLogger': {'provider': './tests/plugins.spec.js:showLoggerProvider',

6 Chapter 1. Welcome to heka-node’s documentation!

heka-node Documentation, Release 0.5

'label': 'some_custom_label'}}
};
var jsonConfig = JSON.stringify(config);
var client = configModule.clientFromJsonConfig(jsonConfig);

1.3 Basic Usage

After instantiating your logger, you can start sending counters and timers using the heka-node client.

1.3.1 Increment counters

Counters increment a named value. You may increment the counter by values other than 1, and you can take random
samples instead of sending an increment message every time.

Typically, these messages go into statsd.

Signature

incr(name, opts={}, sample_rate=1.0)

The simplest way to increment a counter is to simply name the counter

log.incr(‘demo.node.incr_thing’);

Options:

The incr() method takes two optional arguments, an opts dictionary and a sample_rate.

name is the name of the counter you are incrementing.

The opts dictionary may include an integer count and dictionary fields. count represents the number to
increment by in case you want to increase the counters by more than the default of 1.

fields is a dictionary of data. By default, heka-node will create this dictionary for you and autopopulate
the name and sampling rate into the dictionary for you. If you supply fields, you can supply additional
key value pairs to store into fields.

If the sample_rate is supplied, it must be a float from 0 to 1.0. heka-node will compute a random number.
If the random number is greater than the sample_rate, then no message is delivered.

Note that because Javascript has only a single number type, you will need to use the heka.BoxedFloat
type to ensure that the sample_rate is properly encoded into a double precision number to protect against
a rate of 1.0 being encoded into an integer.

Example

log.incr('some_counter', {count: 2, my_meta: 42}, new heka.BoxedFloat(0.25))

Will send a message ~25% of the time to hekad. Each increment will increase the count of ‘some_counter’ by 2 and
will also send a field ‘my_meta’ with a value of 42 to the server.

1.3.2 Timers

The timer method provides a way to decorate functions so that you will emit timing messages whenever the function
is invoked.

Typically, these messages go into statsd.

1.3. Basic Usage 7

heka-node Documentation, Release 0.5

Signature

timer(fn, name, opts={})

Options:

fn is the function to be called name is the name of the event you are measuring. opts may contain a rate
attribute which specifies a sampling rate for timer messages.

The return value of timer is your decorated function.

Note that because Javascript has only a single number type, you will need to use the heka.BoxedFloat
type to ensure that the rate is properly encoded into a double precision number to protect against a rate of
1.0 being encoded into an integer.

1.3.3 Encoders

The heka wire format for 0.2 currently uses ProtocolBuffers to encode the header and you may use ProtocolBuffer or
JSON to encode the payload.

At this time, please use the JSON encoder only. There are known bugs when the ProtocolBuffer encoder is applied to
the payload of the message body.

1.3.4 Example

heka-node includes a complete example that exercises the timer() and the incr() methods using a thing HTTP REST
API server. You can find the source in the heka-node repository on github in the example directory.

8 Chapter 1. Welcome to heka-node’s documentation!

https://github.com/mozilla-services/heka-node/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

	Welcome to heka-node's documentation!
	Getting Started
	Heka Configuration
	JSON format
	Setting up a heka-node client
	Streams
	debugStreamFactory
	fileStreamFactory
	stdoutStreamFactory
	udpStreamFactory
	Filters
	Disabling Timers
	Plugins

	Basic Usage
	Increment counters
	Timers
	Encoders
	Example

	Indices and tables

