

 Navigation

 	
 index

 	
 next |

 	heka-node 0.5 documentation

heka-node

[image: https://secure.travis-ci.org/mozilla-services/heka-node.png]
heka-node is a Node.js client for the “Heka” system of application logging and
metrics gathering developed by the Mozilla Services [https://wiki.mozilla.org/Services] team. The Heka system is meant to make
life easier for application developers with regard to generating and sending
logging and analytics data to various destinations. It achieves this goal (we
hope!) by separating the concerns of message generation from those of message
delivery and analysis. Front end application code no longer has to deal
directly with separate back end client libraries, or even know what back end
data storage and processing tools are in use. Instead, a message is labeled
with a type (and possibly other metadata) and handed to the Heka system,
which then handles ultimate message delivery.

More information about how Mozilla Services is using Heka (including what is
being used for a router and what endpoints are in use / planning to be used)
can be found in the heka-docs [https://github.com/mozilla-services/heka-docs] repository on github.

You can find a pre-rendered version of that documentation on
readthedocs.org at heka-docs.rtfd.org [http://heka-docs.rtfd.org].

A pre-rendered version of the heka-node documentation can be found on
readthedocs.org at heka-node.rtfd.org [http://heka-node.rtfd.org].

The primary component to the heka-node library, is the
Basic Usage client class which exposes a clientFromJsonConfig
factory function that will generate a configured client.

The HekaClient should be instantiated with the factory function.

Folks new to using Heka will probably find Heka Configuration a good
place to get started.

Welcome to heka-node’s documentation!

Contents:

	Getting Started

	Heka Configuration
	JSON format

	Setting up a heka-node client

	Streams

	debugStreamFactory

	fileStreamFactory

	stdoutStreamFactory

	udpStreamFactory

	Filters

	Disabling Timers

	Plugins

	Basic Usage
	Increment counters

	Timers

	Encoders

	Example

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	heka-node 0.5 documentation

Getting Started

There are two primary components with which users of the heka-node library
should be aware. The first is the Basic Usage
clientFromJsonConfig factory function.

The HekaClient exposes the Heka API, and is generally your main
point of interaction with the Heka system. The client doesn’t do
very much, however; it just provides convenience methods for
constructing messages of various types and then passes the messages
along. Actual message delivery is handled by a stream.
Without a properly configured stream, a HekaClient
is useless.

 Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	heka-node 0.5 documentation

Heka Configuration

To assist with getting a working Heka set up, heka-node provides a
Basic Usage module which will take declarative configuration info in
JSON format and use it to configure a HekaClient instance.

JSON format

The clientFromJsonConfig function of the config module is used to
create a HekaClient instance.

A minimal configuration that will instantiate a working Heka client
may look like this

var heka = require('heka');
var heka_CONF = {
 'stream': {'factory': 'heka/streams:udpStreamFactory',
 'hosts': ['localhost'],
 'ports': [5565]
 },
 'logger': 'test',
 'severity': heka.SEVERITY.INFORMATIONAL
};
var jsonConfig = JSON.stringify(heka_CONF);
var log_client = heka.clientFromJsonConfig(jsonConfig);

There are several optional parameters you may use to specialize the
heka-node client. A detailed description of each option follows:

	logger

	Each heka message that goes out contains a logger value, which is simply
a string token meant to identify the source of the message, usually the
name of the application that is running. This can be specified separately for
each message that is sent, but the client supports a default value which will
be used for all messages that don’t explicitly override. The logger config
option specifies this default value. This value isn’t strictly required, but
if it is omitted ‘’ (i.e. the empty string) will be used, so it is strongly
suggested that a value be set.

	severity

	Similarly, each heka message specifies a severity value corresponding to
the integer severity values defined by RFC 3164 [https://www.ietf.org/rfc/rfc3164.txt]. While each message can
set its own severity value, if one is omitted the client’s default value will
be used. If no default is specified here, the default default (how meta!)
will be 6, “Informational”.

	disabledTimers

	Heka natively supports “timer” behavior, which will calculate the amount of
elapsed time taken by an operation and send that data along as a message to
the back end. Each timer has a string token identifier. Because the act of
calculating code performance actually impacts code performance, it is
sometimes desirable to be able to activate and deactivate timers on a case by
case basis. The disabledTimers value specifies a set of timer ids for
which the client should NOT actually generate messages. Heka will attempt
to minimize the run-time impact of disabled timers, so the price paid for
having deactivated timers will be very small. Note that the various timer ids
should be newline separated.

	filters

	You can configure client side filters to restrict messages from
going to the server.

Setting up a heka-node client

The following snippet demonstrates setting up a minimal heka-node client that writes out
protocol buffer formatted messages to localhost on port 5565.

var heka = require('heka');
var config = {
 'stream': {'factory': 'heka/streams:udpStreamFactory',
 'hosts': ['localhost'],
 'ports': [5565]
 },
 'logger': 'test',
 'severity': heka.SEVERITY.INFORMATIONAL
};

var jsonConfig = JSON.stringify(config);
var client = heka.clientFromJsonConfig(jsonConfig);

Streams

The heka client supports different kinds of output streams.

Each stream allows at least the one parameter hmc which specifies
the kind of HMAC signature to use when signing messages. By default,
hmc is set to null and no signatures will be written into the header
portion of the serialized message.

debugStreamFactory

Buffers messages into a list within the stream. This is useful if
you want to capture your own messages for inspection within a unit
test suite. Example usage can be found in the heka-node testsuite.

No extra configuartion parameters are supported.

Sample configuration

var heka = require('heka');
var config = {
 'stream': {'factory': 'heka/streams:debugStreamFactory'},
 'logger': 'test',
 'severity': heka.SEVERITY.INFORMATIONAL
};

fileStreamFactory

Write messages out into a filepath. The parent directory of the
file must exist.

filepath is a required parameter. The parent directory of
filepath must exist or the heka-client will error out during
initialization.

Sample configuration

var heka = require('heka');
var config = {
 'stream': {'factory': 'heka/streams:fileStreamFactory',
 'filepath': '/tmp/some_output_file.txt'},
 'logger': 'test',
 'severity': heka.SEVERITY.INFORMATIONAL
};

stdoutStreamFactory

Writes messages directly to stdout. This is probably not useful
to most people as all messages are serialized to protocolbuffer
prior to being written to a stream. This output stream may be
useful if you implement an encoder to replace the ProtobufEncoder.

No extra configuration parameters are supported.

Sample configuration

var heka = require('heka');
var config = {
 'stream': {'factory': 'heka/streams:stdoutStreamFactory'},
 'logger': 'test',
 'severity': heka.SEVERITY.INFORMATIONAL
};

udpStreamFactory

Writes messages to one or more hosts.

udpStreamFactory expects hosts and ports to be defined.

Sample configuration

var heka = require('heka');
var config = {
 'stream': {'factory': 'heka/streams:udpStreamFactory',
 'hosts': ['localhost'],
 'ports': [5565],
 },
 'logger': 'test',
 'severity': heka.SEVERITY.INFORMATIONAL
};

Filters

Filters can be used to suppress the client from emitting messages
which match specific criteria. We currently provide the following
filters :

	typeBlacklistProvider

	Suppress any messages where the type attribute matches one of the types
in the provider.

	Sample Configuration ::

	var config = {‘types’: {‘foo’: {‘severity’: 3}}};

	typeWhitelistProvider

	Only allow messages to pass through where the type matches one
of the types in the provider.

	severityMaxProvider

	Only allow message to pass through if the severity of the message
is strictly greater than the severity in the provider.

	typeSeverityMaxProvider

	Given a dictionary of type to severity, only allow message to pass
through for a given type if the severity of the message is
strictly greater than the one specified in the configuration.

For messages where the type is not specified, allow the message
through regardless of the severity.

Example usage for each of these filter is available in the
filters.spec.js testsuite

Disabling Timers

The heka client will let you disable calls to the timer() method.
Each call to timer() requires a timer name in the second positional
argument. Passing in a list of names, or a wildcard (‘*’) will
disable any timer calls where the timer name matches at least one of
the disabled timer names.

The configuration expects either a list of message type names which
match timer messages that will be excluded. You can also use a
wildcard * to disable all timer code.

Example configuration

var config = {
 'stream': {'factory': 'heka/streams:debugStreamFactory'},
 'logger': 'test',
 'severity': 5,
 'disabledTimers': ['some_disabled_type'],
};
var jsonConfig = JSON.stringify(config);
var client = configModule.clientFromJsonConfig(jsonConfig);

Plugins

Plugins can be bound to the heka-node client using the plugins key
of the configuration dictionary. You must provide at least a provider key
which will be resolved into a factory function to bind a new method
onto the heka-node client. Any additional key/value pairs in the
plugin configuration are passed into the factory function to configure
the plugin.

Example configuration

var config = {
 'stream': {'factory': 'heka/streams:debugStreamFactory'},
 'logger': 'test',
 'severity': 5,
 'plugins': {'showLogger': {'provider': './tests/plugins.spec.js:showLoggerProvider',
 'label': 'some_custom_label'}}
};
var jsonConfig = JSON.stringify(config);
var client = configModule.clientFromJsonConfig(jsonConfig);

 Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	heka-node 0.5 documentation

Basic Usage

After instantiating your logger, you can start sending counters and
timers using the heka-node client.

Increment counters

Counters increment a named value. You may increment the counter by
values other than 1, and you can take random samples instead of
sending an increment message every time.

Typically, these messages go into statsd.

Signature

incr(name, opts={}, sample_rate=1.0)

The simplest way to increment a counter is to simply name the counter

log.incr(‘demo.node.incr_thing’);

Options:

The incr() method takes two optional arguments, an opts dictionary
and a sample_rate.

name is the name of the counter you are incrementing.

The opts dictionary may include an integer count and dictionary fields.
count represents the number to increment by in case you want to
increase the counters by more than the default of 1.

fields is a dictionary of data. By default, heka-node will
create this dictionary for you and autopopulate the name and
sampling rate into the dictionary for you. If you supply fields,
you can supply additional key value pairs to store into fields.

If the sample_rate is supplied, it must be a float from 0 to 1.0.
heka-node will compute a random number. If the random number is
greater than the sample_rate, then no message is delivered.

Note that because Javascript has only a single number type, you
will need to use the heka.BoxedFloat type to ensure that the
sample_rate is properly encoded into a double precision number
to protect against a rate of 1.0 being encoded into an integer.

Example

log.incr('some_counter', {count: 2, my_meta: 42}, new heka.BoxedFloat(0.25))

Will send a message ~25% of the time to hekad. Each increment will
increase the count of ‘some_counter’ by 2 and will also send a field
‘my_meta’ with a value of 42 to the server.

Timers

The timer method provides a way to decorate functions so that you will
emit timing messages whenever the function is invoked.

Typically, these messages go into statsd.

Signature

timer(fn, name, opts={})

Options:

fn is the function to be called
name is the name of the event you are measuring.
opts may contain a rate attribute which specifies a sampling rate for timer messages.

The return value of timer is your decorated function.

Note that because Javascript has only a single number type, you
will need to use the heka.BoxedFloat type to ensure that the
rate is properly encoded into a double precision number
to protect against a rate of 1.0 being encoded into an integer.

Encoders

The heka wire format for 0.2 currently uses ProtocolBuffers to encode
the header and you may use ProtocolBuffer or JSON to encode the
payload.

At this time, please use the JSON encoder only. There are known bugs
when the ProtocolBuffer encoder is applied to the payload of the
message body.

Example

heka-node includes a complete example that exercises the timer() and
the incr() methods using a thing HTTP REST API server. You can find
the source in the heka-node [https://github.com/mozilla-services/heka-node/] repository on github in the example
directory.

 Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	heka-node 0.5 documentation

Index

 Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		heka-node 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_themes/mozilla/README.html

 Navigation

 		
 index

 		heka-node 0.5 documentation »

Mozilla sphinx’s theme

This is a version of Mozilla’s sandstone theme, for the Sphinx documentation
engine. [http://sphinx.pocoo.org].

Okay, how do I install it?

You need to install it locally and configure Sphinx to use it. In your conf.py file:

import mozilla_sphinx_theme
import os

html_theme_path = [os.path.dirname(mozilla_sphinx_theme.__file__)]

html_theme = 'mozilla'

Also, take care and remove the pygments_style configuration, as it may not be
of the better taste with the mozilla’s theme.

Enjoy!

 © Copyright 2012, Rob Miller, Victor Ng.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

